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Abstract

Video action classification and temporal localization are two key components of
video understanding where we witnessed significant progress leveraging neural network
architectures. Recently, the research focus in this area shifted towards computation-
ally efficient solutions to support real-world applications. Existing methods mainly aim
to pick salient frames or video clips with fixed architectures. As an alternative, here,
we propose to learn policies to select the most efficient neural model conditioned on
the given input video. Specifically, we train a novel model-selector offline with model-
affinity annotations that consolidate recognition quality and efficiency. Further, we in-
corporate the disparity between appearance and motion to estimate action background
priors that enable efficient action localization without temporal annotations. To the best
of our knowledge, this is the first attempt at computationally efficient action localization.
We report classification results on two video benchmarks, Kinetics and multi-label HVU,
and show that our method achieves state-of-the-art results while allowing a trade-off be-
tween accuracy and efficiency. For localization, we present evaluations on Thumos’14
and MultiThumos, where our approach improves or maintains the state-of-the-art perfor-
mance while using only a fraction of the computation.

1 Introduction
Massive growth in the generation of video content demands for developing algorithms to
understand videos automatically. To this end, a large body of research has been done to
address the tasks of video classification and localization. As a result, a wide variety of diverse
methods are developed, each tackling the problem from a particular perspective such as
architectural design (2D image-based models [25], 3D models [7, 42], transformers [1, 32]),
complementary modalities (motion [8, 31] and audio [12, 23]), and efficiency (light [25, 36]
and heavy [9] models). While each approach has pros and cons, an important question
is: what model should one pick to solve the task at hand? The answer to this question is
becoming harder with the rapid growth of video models. A well-known ML technique to
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Figure 1: Overview of model selection. Left: usually, models, can be more accurate, but
often require more computation. However, this setting is restricted to using one model for
the whole dataset. Right: our approach where a model-selector will select the appropriate
model, given the input video, to obtain better computation and better accuracy.

remedy this issue is ensemble learning [11, 38, 44]. This approach aggregates the prediction
of each base model and results in a more reliable final prediction. However, model ensembles
are usually expensive as multiple models are applied on every input video. Moreover, they
assume that there exists a single combination of models that is optimal for all the video
samples. In contrast, we argue that the selection process should be done on a per-video
basis. We are motivated by the fact that videos come at different complexities. For example,
some videos have less temporal complexity and can be reliably classified using 2D CNN
models, while some others might require motion clues.

In this paper, we propose a committee-based conditional compute model that learns how
to select a model per example to accurately classify it while adjusting the computation to the
complexity of the video. Specifically, we train a model-selector with a supervision signal
that considers accuracy and efficiency for each training video. We generate such supervision
signal based on the recognition quality and computational cost of each model and refer to
them as model-affinity. Our classification method is effective, efficient and complementary to
the existing approaches for efficient video understanding such as using salient frames[13] or
efficient architectures[7, 25]. Further, we propose an approach to learn a model-selector for
efficient action localization without temporal annotations. We exploit the disparity between
appearance and motion to estimate where a motion-based model can be more effective. To
the best of our knowledge, this is the first attempt at efficient action localization.

Our key contribution is the novel model-selection framework conditioned on the input
video. In the proposed framework, given a pool of models of varying capacities, a model-
selector is learned to select a cost-effective model for a given video. Our second contribution
is a method to generate motion-affinity based on the recognition quality (given video labels)
and computational cost of each model. Further, to generate motion-affinity for localization
in absence of temporal annotations, we propose a method to exploit the disparity between
appearance and motion. Finally, our method exceeds the state-of-the-art methods on two
datasets for video classification and two datasets for weakly-supervised localization.

2 Related work
Efficient action recognition: Extensive studies have been conducted to design efficient

video models. There are two lines of work in the literature to achieve this goal. The first
approach focuses on designing single lightweight architectures, for example, by using neural
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architecture search [7, 36], decomposing 3D kernels into spatial and temporal kernels [37,
43, 51], or shifting channels [6, 25]. On the other hand, a large body of research has been
focusing on selecting a subset of salient frames to efficiently process a video conditioned on
the input [12, 13, 29, 49, 50]. This is commonly done by training agents to find which frame
to observe next [5, 50, 52, 56], reformulating the problem in the early exiting framework [13],
finding relevant frames off-line [12, 21], gating frames [17], skipping RNN states [2], or
adaptively selecting the input resolution for each frame [29]. While a single network is
employed to attain efficiency in the above approaches, we propose to select an appropriate
model adaptively from a collection of models to obtain a favorable speed-accuracy trade-off.
Our method is orthogonal to current practices and complements them.

Weakly-supervised action localization: Several weakly-supervised approaches have
been proposed. Most methods utilize motion information and build on one or more of the
multiple-instance learning, attention, cross-attention, and background modeling. Since mul-
tiple instance learning and attention were employed in [33, 35, 46], they have been integral
to the methods for localization. Several losses are proposed for discriminability of action
instances over a video [31] or similarity between a video pair with a common class [35]. To
alleviate the confusion due to background, [34] developed the top-down class-guided atten-
tion to model the background. Further, for background modeling, temporal relations among
video segments are exploited in [54] and a background suppression network is designed
in [24]. A video is segmented into interpretable fragments and used to generate action pro-
posals in [19]. To distinguish action from near-action context, [39] designed a class-agnostic
frame-wise probability, conditioned on frame attention, using conditional variational auto-
encoder. In [55], the attentions from RGB and flow streams are fused, while [23] combines
visual cues with audio by cross-attention to improve localization. A common and critical
factor for the success of the above works (all two-stream models) is the use of optical flow
along with RGB, especially to differentiate the action foreground from the background. We
exploit this factor in our model-selection method for action localization.

Committee-based learning: Model ensembles is a well-known ML technique [11, 38,
44] for obtaining better predictive performance than the constituent models alone. The tech-
nique aggregates the prediction of each base model and results in a more reliable final pre-
diction [16, 22, 27, 47, 48]. Another family of committee-based models is model cascading.
It speeds up the model ensembles by sequentially applying each model and using heuristic
criteria to determine when to exit from the cascade [14, 15, 40, 47]. Different from previous
works that focus on designing ensembles or cascade schemes, we focus on learning a policy
function to select a single desired model from a given pool of models, obtaining a favorable
speed-accuracy trade-off. Some of the recent works [10, 28, 45] proposed learning schemes
similar to ours, however, none of them are focused on video classification and localization.
Only one [45] of them focuses on visual recognition suggesting the possible benefit of model
selection for object detection. Unlike these works, our framework can also learn with weak
supervision and its applicability is validated for multiple video recognition tasks.

3 Approach
This section describes our model selection process conditioned on input samples for video
classification and weakly-supervised action localization. An overview of our method is
shown in Figure 2. Our goal is to learn a policy model that selects the most suitable model
at inference time from a pool of models with varying capacities. To this end, we first assess
each available model offline on a set of training samples. This assessment assigns an affinity
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Figure 2: Overview of method: During training, we extract features with our model pool.
These along with the computational cost of the model and video labels are used for model
assessment, which generates model-affinity. This cost-effectiveness per model will be used as
a supervision signal to the model-selector. During testing, we simply use the model-selector
and run the corresponding model per video for classification or per clip for localization.

score to each training sample for every model in the pool. The affinity score incorporates
the accuracy of the model for the given sample and the associated computational cost of the
model. Using these affinity scores, we train a model-selector that maps the input samples to
the corresponding model-affinity. Next, we explain in detail each component of our method.

3.1 Policy model training
The two main components of the policy model training are model assessment and the model-
selector. Suppose we are given a pool of N models M1 to MN with increasing capacity. The
model assessment module generates model-affinity scores Gk(x) arranged into a vector for
a given training sample x for each model Mk in the pool. It measures how well-suited each
model from the pool is for efficient recognition of the given sample. Please see Sections 3.2
and 3.3 for specific designs of the model affinity. This model-affinity acts as a supervision
signal to train the model-selector. To minimize the computational load at inference time, we
design the model-selector as a simple multi-layer perceptron (MLP) mounted on the most
efficient (smallest) model in the pool. Given a batch of samples x ∈ B and their model
affinity scalar Gk(x), the model-selector P is learned with the following loss:

L= ∑
x∈B

N

∑
k=1
−Gk(x) logP(Mk,x) (1)

where P(Mk,x) is the probability that model-selector selects model Mk for sample x. Here,
Gk(x) can also be represented as a binary scalar by considering the most suited model as a
pseudo-label; in that case, Eq. 1 represents the cross-entropy loss.
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3.2 Model selection for video classification
For classification tasks, our model-affinity needs to indicate the model with the best efficiency-
accuracy trade-off in the model pool for a particular video x. To accommodate this, we define

Gk(x) = 1(argmin
i

[Lcls(Mi,x,Yx)+αFi] = k) (2)

as the model-affinity binary scalar, where 1() is the indicator function, Lcls(Mi,x,Yx) is the
downstream video classification loss, Fi is the normalized cost of model Mi and Yx is the label
of video x. Intuitively, this means Gk(x) = 1, when Mk has lowest loss + weighted FLOPs
in the model pool and 0 otherwise. In the multi-label video classification case, Lcls(Mi,x,Yx)
is the binary cross-entropy loss, whereas in the single-label case it is regular cross-entropy.
A regularizing factor α penalizes large number of FLOPs and Fk is normalized as Fk =

f lops(Mk)

∑
N
i=1 f lops(Mi)

, to avoid imbalanced model supervision. When α = 0, the Gk(x) indicates the

model with lowest loss. We observe that in some cases this strategy results in a lower amount
of FLOPs than the model with the most compute. This is because models that perform better
on average do not necessarily perform better on every example. Models with lower compute
might have different inductive biases that are complimentary or simply generalize better
for certain examples due to their smaller size. However, generally speaking, an α > 0 will
encourage better trade-offs between accuracy and efficiency. For example, in the single-label
classification case, we prefer the model with the lowest compute, if the argmax over our class
probabilities is the same for all models in the model pool.

3.3 Model selection for weakly-supervised action localization
For video classification, video-level annotations are available for each sample (i.e. video)
during training. Differently, in weakly-supervised localization, each clip in the video needs
to be recognized as belonging to an action class or the background, without the clip-level
annotations. Hence, model assessment needs to be done for each clip with video-level labels
and without the knowledge of which clips belong to the background. With such weak-
supervision, the localization losses in the literature are defined either for the whole video [39]
or for a pair of videos[35], but not for a single clip. We approach this problem by keeping
an appearance-based model Mrgb and a motion-based model Mmotion in the model pool. We
observe that the motion model and RGB model often disagree on action background where
action-related appearance context is still present, e.g. running track is visible just after an
instance of ‘long-jump’. We show this in an ablation in Section 5.2. We propose the idea
of using disparity between class activations of Mrgb and Mmotion as a proxy for estimating
the background clips with action context, expecting mostly high Mrgb activations and low
Mmotion activations. Also, often on key moments of action, Mmotion activations are higher.
We model the likelihood of where motion should be given priority as:

Dmotion(x) =
|Mrgb(x,c)−Mmotion(x,c)|

Γv
. (3)

Mrgb(x,c) and Mmotion(x,c) are activations for class c, predicted by Mrgb. Γv is set to maxi-
mum absolute difference between the two activations over time for video v.

The distribution of Dmotion can vary widely for different videos, so in order to get the
pseudo-labels for a given video we apply a video-specific threshold τv on Dmotion. When

Citation
Citation
{Shi, Dai, Mu, and Wang} 2020

Citation
Citation
{Paul, Roy, and Roy-Chowdhury} 2018



6JAIN, BEN YAHIA, GHODRATI, HABIBIAN, PORIKLI: CONDITIONAL MODEL SELECTION

Dmotion(x) > τv, the pseudo-label Qk(x) indicates the motion model, otherwise it indicates
the appearance model. For the desired computation budget per video, τv is set such that the
top β fraction of clips are assigned to Mmotion. Consequently, model-affinity is defined as:

Gk(x) = Qk(x)(|Dmotion(x)− τv|+1). (4)

Note here that as the disparity Dmotion goes below τv the model-affinity increases in favour
of Mrgb and when it is high it favours Mmotion, which is typically more expensive. One can
alternatively also learn model-selector P, purely with pseudo-labels, i.e., Gk(x) = Qk(x). We
analyze this in Section 5.2.

Discussion: Our model assessment for localization assumes that similar appearance cues
are often present both during, and in between actions (verified in Figure 5-a). This can
be a limitation of using motion disparity in rare cases, where videos are devoid of related
background in between actions, e.g. videos of sports highlights. An alternative could be to
design a clip-level localization loss that works with weak supervision. However, we did not
get encouraging results in our experiments adapting existing losses [31, 35]. Ultimately, it
comes down to applying the best model on the training videos and use the result as pseudo-
labels to learn the model-selector. Our framework allows for this as shown in Figure 5-c,
where we train model-selector using pseudo-labels. Though motion disparity better exploits
frequent scenarios, our overall framework has wider applicability.

3.4 Model selection at inference
During inference, our model-selector, P, is applied to the input video to obtain confidence
for each model in the pool. According to the compute requirements, we set a threshold on
these confidence scores and select the most efficient model above the threshold. This is done
at the video-level for classification and at the clip-level for localization.

4 Video classification
4.1 Experimental setup

Datasets: We conduct our video classification experiments on two large datasets, Kinetics-
400 [20] and HVU [4]. Kinetics includes 250K and 20K clips for training and evaluation,
respectively. Each video is annotated as 1 out of 400 action classes. Additionally, we eval-
uate on a subset of Kinetics-400 called Mini-Kinetics. For HVU, we follow the standard
evaluation and use 470K train and 30K evaluation video clips. HVU, which is multi-labeled,
further differs from Kinetics, which is limited to only action classes. HVU covers a broad
range of classes, e.g. objects, attributes, and scenes. Each model is evaluated in terms of
accuracy vs. efficiency. Following literature, we rely on HIT@1 for the Kinetics 400 dataset
and mean average precision (mAP) for HVU to quantify the classification accuracies. For
efficiency we report the average number of floating point operations (in GFLOPs).

Implementation details: For Kinetics experiments, we consider a pool of {XS, S, M,
L} X3D [7] models. We train our model selector using XS model predictions, as input, using
an Adam optimizer with a learning rate of 1e− 3 decaying by 0.1 at epochs 2 and 4. We
train the model for 5 epochs. For HVU experiments, we consider a pool of X3D-M and
EfficientNet-B0 [41] models pre-trained on Kinetics and Imagenet, respectively. The model
selector is trained over EfficientNet-B0 predictions as input for 1 epoch using a learning rate
of 1e−3. We include more details in the supplementary materials.
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Figure 3: HIT@1 vs. efficiency on Kinetics-400: Ablation showing our method with vary-
ing values for alpha and number of views in (a) and (b) respectively. (a) Shows our method
outperforms random selection and models in model pool and (b) shows we can enjoy effi-
ciency gain from aggregating less clips. In (c) we show average GFLOPs per class.
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Figure 4: Kinetics-400 Model-Selector & Latency: In (a) we see results for 3 different
model selectors. Starting at their respective model selector backbone the results all converge
to a similar curve (though in different GFLOP regions). In (b) we have measured latency
against HIT@1 instead of GFLOPs as in Figure 3-a.

4.2 Analysis

Varing the α parameter: We analyse the effect of the parameter α (from Eq. 2) by
training the X3d XS based selector with different α ranging from 5e−5 to 5e−3. As shown
in Figure 3-a, we see that our model-selector at test time compares favourably against a
random selector baseline. It demonstrates that our model-selector has learned to pick better
models. Moreover, we observe that by adjusting the decision threshold for α = 5e−4, our
selector smoothly balances the overall accuracy vs. the computation cost without retraining.
Finally, we observe that our selection outperforms all the individual models from the pool.

Clip-level ablation: In Figure 3-b we also study whether our proposed method is com-
plementary to frame sampling based methods. It shows that we can indeed get better trade-
offs by lowering the number of clips per video. We draw the same conclusion on the HVU
dataset, which is added to the supplementary material.

Compute per class: Since our model-selector is flexible in assigning compute condi-
tioned on the input, we also measure the average amount of compute for particular classes.
In Figure 3-c, we show HIT@1 for different classes against its average compute. Note that it
assigns cheaper models to classes it can easily detect like shearing sheep and marching, and
expensive models to more complex classes like tasting food and eating chips.

Model-selector ablation: In Figure 4-a, we see that different model selectors all obtain
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HVU GFLOPs mAP.
3D Resnet-18* [42] 38.6 35.4
HATNet* [4] 41.8 39.6
FrameExit (β = 1e−2) [13] 5.7 46.1
FrameExit (β = 1e−3) [13] 11.7 47.7
X3D-M [7] 9.46 49.1

Ours 11.5 50.1

Mini-Kinetics GFLOPs HIT@1
LiteEval [49] 99.0 61.0
SCSampler [21] 41.9 70.8
ARNet [29] 32.0 71.7
FrameExit [13] 7.8 75.3
X3D-M [7] 14.19 81.0

Ours 7.9 83.5

Table 1: State-of-the-art comparisons, where we pick our model with similar average
GFLOPs per video as alternative methods. *GFLOPs are per clip, instead of per video.
Note that we outperform SOTA on both datasets at a similar number of GFLOPs

(similar) favourable accuracy-efficiency trade-offs. In fact, all overlap in certain GFLOP
ranges with comparable trade-offs. However, a clear limitation of choosing a more expensive
model-selector is seen by the fact that the model-selector is run all the time, hence we cannot
obtain performance at lower GFLOPs than the model selector. Thus using X3D-XS as the
model selector is a more flexible option.

Latency impact: In Figure 4-b, we show an efficiency-accuracy plot with inference
speed instead of GFLOPs. These measurements are obtained with a 2080TI 12GB GPU,
using a batch size of 32. The curve in black shows the performance with keeping the model
pool in memory. Note that we can keep around 150 sets of our model pool on GPU at test
time before running out of memory. However, to simulate memory-constrained environ-
ments, we also measure loading the model at every selection in green, which shows minimal
overhead.

4.3 State-of-the-art comparison
In Table 1, we compare against state-of-the-art models. Here, we use 2 clips for HVU and
3 clips for Mini-Kinetics. We pick our model based on the GFLOPs of the state-of-the-art
model FrameExit [13] and evaluate for accuracy. We see a difference of 2.4 mAP and 8.2
HIT@1 percentile points over FrameExit at roughly the same GFLOPs for HVU and Mini-
Kinetics respectively. This is in large part due to our model pool, however, we also see an
increase over this comparing against X3D-M which is of roughly equal size. This shows the
effectiveness of our model-selector.

5 Weakly-supervised action localization

5.1 Experimental setup
Datasets: For evaluation we use Thumos’14 [18] and MultiThumos [53] datasets. The

Thumos’14 dataset has 20 action classes with about 15.5 action instances per video. We
follow the convention to train on the validation set of 200 videos and evaluate on the test set
of 212 videos. MultiThumos has the same set of videos as in Thumos’14, but it extends to 65
classes with 1.5 labels per frame, making it a more challenging multi-label dataset. We report
mean Average Precision (mAP) under different intersection over union (IoU) thresholds.

Implementation Details: We mount our model selection on W-TALC [35] method and
train two localization models, Mrgb using X3D-M features and Mmotion I3D-motion features.
The X3D-M and I3D-motion [3] features come from models pretrained on Kinetics dataset.
Each video stream is divided into 16-frame non-overlapping clips. To temporally align to
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Figure 5: Ablation for localization on Thumos’14: (a) Distribution of disparity between
motion and appearance. (b) Ablation on β and comparison with random baseline. (c) Train-
ing model-selector with pseudo-labels. (d) Varying model-selector backbone (β = 0.7).

this, we adapt the X3D-M by extracting frames at 25 Hz and set stride to 1. We do not
retrain it and use the weights provided by the authors. During inference, we further enhance
the action proposals by ActionBytes [19] post-processing.

5.2 Analysis

In this section, we analyze the components of our method on Thumos’14 dataset.
Motion vs appearance for background localization: In Figure 5-a, we show distribu-

tion of disparity between motion and appearance activations (Eq. 3) in the action foreground
and background. The distribution for the background is shifted towards the right confirm-
ing that often appearance activation is higher due to action context in the background. This
enables us to use the disparity, Dmotion, to estimate the background and motion affinity.

Impact of computation budget factor β : Computation budget factor β controls the
emphasis on computation while training model-selector. Figure 5-c plots the mAP against
computation in GFLOPs. Here, for all values of β our model-selector performs better than
a random selection. For smaller values of β , the selector does slightly better at lower com-
pute, but in the more interesting range (mAP>24%), higher values do a bit better. Due to
complementary nature of X3D-M and I3D-flow models, the random selection baseline is
competitive at lower compute but it cannot select well when more motion clips are used.

Motion-affinity as pseudo-labels: An alternative way to train model-selector is using
motion-affinity as pseudo-labels, i.e., Gk(x) = Qk(x). In Figure 5-d, we evaluate this for two
values of β and compare with the default motion-affinity supervision. There is not much
difference between the two, but in the more interesting range of mAP-GFLOP trade-off, our
default method performs better and is also more robust to hyper-parameter β . As a result of
this and the ablation over β , we choose our default motion-affinity and β = 0.7 here on.

Ablation on the choice of model-selector: Impact of varying model-selector backbone
is analyzed in Figure 5-b. The more efficient X3D-XS and X3D-S models fail to perform
well. Other than being too small, they are affected by the temporal alignment that requires
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them to represent a 16-frame clip by only 4 or 13 frames. The temporal alignment has less
impact on X3D-M and X3D-L, but the latter is affected by the low resolution (320 × 180)
of the Thumos’14 videos. For X3D-L, the smaller dimension of 180 needs to be scaled up
to 356 versus 256 for X3D-M. Hence, unless the X3D-L is modified and retrained to match
the input to I3D-flow spatiotemporally, X3D-M is the obvious choice here.
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Figure 6: Average mAP vs.
GFLOPs plots (Thumos’14)
with W-TALC and Action-
Bytes as underlying methods.

Thumos’14 MultiThumos
mAP at IoU (%) mAP at IoU (%)

Method 0.5 0.7 Avg. mAP 0.5 Avg. mAP GFLOPs

Liu et al. [26] 23.1 7.0 32.4 - - 112
Nguyen et al. [34] 26.8 9.0 36.3 - - 112
BaS-Net [24] 27.0 10.4 35.3 - - 112
DGAM [39] 28.8 11.4 37.0 - 112
ActionBytes [19] 29.0 9.5 - 12.1 21.5 112
†ActionBytes (flow) [19] 28.6 10.0 34.1 11.5 19.8 56
A2CL-PT [30] 30.1 10.6 37.8 - - 112
TSCN [55] 28.7 10.2 37.8 - - 112

Ours 30.0 10.4 35.9 11.7 20.7 43.8

Table 2: Comparison on Thumos’14 and MultiThu-
mos We report mAP values varying IoUs and also aver-
age mAP over IoU=[0.1:0.7:0.1] for Thumos’14 and IoUs=
[0.1:0.5:0.1] for MultiThumos. † Reproduced results.

Varying underlying localization method: Figure 6 plots average of mAPs over IoUs
[0.1:0.7:0.1] against computation in GFLOPs per clip. Here, in addition to applying our
method on the W-TALC method, we also plot for an alternative localization method, Action-
Bytes. For both the methods we achieve better accuracy-efficiency trade-off compared to a
random selection from X3D-M and I3D-flow models.

5.3 State-of-the-art comparison
In Table 2, we compare our model-selection method (on ActionBytes) with the SOTA meth-
ods. We report average mAP over IoUs for Thumos’14 and MutltiThumos datasets. All com-
peting methods have the same 2-stream I3D backbone, except ‘Actionbytes (flow)’. GFLOPs
are equal for the same backbones, because we do not include relatively insignificant compu-
tational costs of different localization heads. We are better or comparable to these methods
while spending about 40% of their compute (78% of ActionBytes-flow). This shows the
efficacy of our model-selection method for efficient weakly-supervised action localization.

6 Conclusion
We propose a novel model-selection framework that, for a given video, selects a model that
can effectively recognize actions while spending just enough computation. For this, we train
a model-selector supervised by motion-affinity. It is a supervision signal designed to opti-
mize for accuracy and efficiency. In the absence of temporal annotations, we exploit disparity
between appearance and motion to estimate action background and generate motion-affinity
for weakly-supervised localization. We demonstrate the utility of our framework for both
classification and localization. For classification, our method exceeds SOTA methods, with
8.2 mAP and 2.4 HIT@1 absolute points, on the Mini-Kinetics and HVU datasets respec-
tively, while using about the same amount of computation. For localization, we report on
Thumos’14 and MultiThumos datasets, maintaining or improving the performance of SOTA
methods while using about 40% of the computation.
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